

 Navigation

 	
 index
	
 modules |
	
 next |
	uWSGI 2.0 documentation »
	The uWSGI project

Note

The project is in maintenance mode (only bugfixes and updates for new languages apis).
Do not expect quick answers on github issues and/or pull requests (sorry for that)
A big thanks to all of the users and contributors since 2009.

The uWSGI project¶

The uWSGI project aims at developing a full stack for building hosting services.

Application servers (for various programming languages and protocols), proxies, process managers and monitors are all implemented
using a common api and a common configuration style.

Thanks to its pluggable architecture it can be extended to support more platforms and languages.

Currently, you can write plugins in C, C++ and Objective-C.

The “WSGI” part in the name is a tribute to the namesake Python standard, as it has been the first developed plugin for the project.

Versatility, performance, low-resource usage and reliability are the strengths of the project (and the only rules followed).

Included components (updated to latest stable release)¶

The Core (implements configuration, processes management, sockets creation, monitoring, logging, shared memory areas, ipc, cluster membership and the uWSGI Subscription Server)

Request plugins (implement application server interfaces for various languages and platforms: WSGI, PSGI, Rack, Lua WSAPI, CGI, PHP, Go …)

Gateways (implement load balancers, proxies and routers)

The Emperor (implements massive instances management and monitoring)

Loop engines (implement events and concurrency, components can be run in preforking, threaded, asynchronous/evented and green thread/coroutine modes. Various technologies are supported, including uGreen, Greenlet, Stackless, Gevent, Coro::AnyEvent, Tornado, Goroutines and Fibers)

Note

Contributors for documentation (in addition to code) are always welcome.

Quickstarts¶

	Quickstart for Python/WSGI applications
	Quickstart for perl/PSGI applications
	Quickstart for ruby/Rack applications
	Snippets

Table of Contents¶

	Getting uWSGI
	Installing uWSGI
	The uWSGI build system
	Managing the uWSGI server
	Supported languages and platforms
	Supported Platforms/Systems
	Web server integration
	Frequently Asked Questions (FAQ)
	Things to know (best practices and “issues”) READ IT !!!
	Configuring uWSGI
	Fallback configuration
	Configuration logic
	uWSGI Options
	Defining new options for your instances
	How uWSGI parses config files
	uwsgi protocol magic variables
	The uwsgi Protocol
	Managing external daemons/services
	The Master FIFO
	Socket activation with inetd/xinetd
	Running uWSGI via Upstart
	Systemd
	Running uWSGI instances with Circus
	Embedding an application in uWSGI
	Logging
	Formatting uWSGI requests logs
	Log encoders
	Hooks
	Overriding Workers
	Glossary
	uWSGI third party plugins

Tutorials¶

	The uWSGI Caching Cookbook
	Setting up Django and your web server with uWSGI and nginx
	Running uWSGI on Dreamhost shared hosting
	Running python webapps on Heroku with uWSGI
	Running Ruby/Rack webapps on Heroku with uWSGI
	Reliably use FUSE filesystems for uWSGI vassals (with Linux)
	Build a dynamic proxy using RPC and internal routing
	Setting up Graphite on Ubuntu using the Metrics subsystem

Articles¶

	Serializing accept(), AKA Thundering Herd, AKA the Zeeg Problem
	The Art of Graceful Reloading
	Fun with Perl, Eyetoy and RaspberryPi
	Offloading Websockets and Server-Sent Events AKA “Combine them with Django safely”
	WSGI env behaviour policies

uWSGI Subsystems¶

	The uWSGI alarm subsystem (from 1.3)
	The uWSGI caching framework
	WebCaching framework
	The uWSGI cron-like interface
	The uWSGI FastRouter
	uWSGI internal routing
	The uWSGI Legion subsystem
	Locks
	uWSGI Mules
	The uWSGI offloading subsystem
	The uWSGI queue framework
	uWSGI RPC Stack
	SharedArea – share memory pages between uWSGI components
	The uWSGI Signal Framework
	The uWSGI Spooler
	uWSGI Subscription Server
	Serving static files with uWSGI (updated to 1.9)
	SNI - Server Name Identification (virtual hosting for SSL nodes)
	The GeoIP plugin
	uWSGI Transformations
	WebSocket support
	The Metrics subsystem
	The Chunked input API

Scaling with uWSGI¶

	The uWSGI cheaper subsystem – adaptive process spawning
	The uWSGI Emperor – multi-app deployment
	Auto-scaling with Broodlord mode
	Zerg mode
	Adding applications dynamically
	Scaling SSL connections (uWSGI 1.9)

Securing uWSGI¶

	Setting POSIX Capabilities
	Running uWSGI in a Linux CGroup
	Using Linux KSM in uWSGI
	Jailing your apps using Linux Namespaces
	The old way: the –namespace option
	FreeBSD Jails
	The Forkpty Router
	The TunTap Router

Keeping an eye on your apps¶

	Monitoring uWSGI with Nagios
	The embedded SNMP server
	Pushing statistics (from 1.4)
	Integration with Graphite/Carbon
	The uWSGI Stats Server
	The Metrics subsystem

Async and loop engines¶

	uWSGI asynchronous/non-blocking modes (updated to uWSGI 1.9)
	The Gevent loop engine
	The Tornado loop engine
	uGreen – uWSGI Green Threads
	The asyncio loop engine (CPython >= 3.4, uWSGI >= 2.0.4)

Web Server support¶

	Apache support
	Cherokee support
	Native HTTP support
	HTTPS support (from 1.3)
	The SPDY router (uWSGI 1.9)
	Lighttpd support
	Attaching uWSGI to Mongrel2
	Nginx support
	Using OpenBSD httpd as proxy
	Notes

Language support¶

	Python support	The uwsgi Python module
	uWSGI API - Python decorators
	Pump support
	Python Tracebacker
	Aliasing Python modules
	Application dictionary
	Virtualenv support
	Python 3
	Paste support
	Pecan support
	Using the django-uwsgi Django app

	The PyPy plugin	Introduction
	Install uWSGI with PyPy support
	The PyPy home
	The PyPy setup file
	WSGI support
	RPC support
	IPython trick
	uWSGI API status
	Options
	Notes

	Running PHP scripts in uWSGI	Building
	Running PHP apps with nginx
	Advanced configuration
	Run PHP apps without a frontend server
	uWSGI API support
	Sessions over uWSGI caches (uWSGI >=2.0.4)
	Zend Opcode Cache (uWSGI >= 2.0.6)
	ForkServer (uWSGI >= 2.1)

	uWSGI Perl support (PSGI)	Compiling the PSGI plugin
	Usage
	Tested PSGI frameworks/applications
	Multi-app support
	The auto reloader (from uWSGI 1.9.18)
	Notes
	Real world example, HTML::Mason

	Ruby support	Ruby API support
	Building uWSGI for Ruby support
	A note regarding memory consumption
	A note regarding threads and fibers
	Running Rack applications on uWSGI
	Running Ruby on Rails applications on uWSGI

	Using Lua/WSAPI with uWSGI	Building the plugin
	Why Lua ?
	Your first WSAPI application
	Concurrency
	Abusing coroutines
	Threading example
	A note on memory
	RPC and signals
	The Lua shell
	Using Lua as ‘configurator’
	uWSGI api status

	JVM in the uWSGI server (updated to 1.9)	The JWSGI interface
	The Clojure/Ring JVM request handler
	Introduction
	Building the JVM support
	Exposing functions via the RPC subsystem
	Registering signal handlers
	The fork() problem and multithreading
	How does it work?
	Passing options to the JVM
	Loading classes (without main method)
	Request handlers
	Notes

	The Mono ASP.NET plugin	Building uWSGI + Mono
	Starting the server
	Under the hood: the mono key
	Concurrency and fork() unfriendliness
	API access
	Tricks

	Running CGI scripts on uWSGI	Enabling the plugin
	Configuring CGI mode
	Notes
	Examples

	The GCCGO plugin	How it works
	Why not use plain Go?
	Building the plugin
	The first app
	uwsgi.gox
	Shared libraries VS monolithic binaries
	Goroutines
	Options
	uWSGI API
	Notes

	The Symcall plugin	Step 1: preparing the environment
	Step 2: our first request handler:
	Step 3: building our code as a shared library
	Final step: map the symcall plugin to the mysym_function symbol
	Hooks and symcall unleashed: a TCL handler
	Considerations

	The XSLT plugin	The request handler
	The routing instruction

	SSI (Server Side Includes) plugin	Using it as a request handler
	Using SSI as a routing action
	Supported SSI commands
	Status

	uWSGI V8 support	Building
	RPC
	Signal handlers
	Multitheading and multiprocess
	Mules
	The uWSGI API
	JSGI 3.0
	CommonJS

	The GridFS plugin	Requirements and install
	Standalone quickstart
	The initial slash problem
	Multiple mountpoints (and servers)
	Replica sets
	Prefixes
	MIME types and filenames
	Timeouts
	MD5 and ETag headers
	Multithreading
	Combining with Nginx
	The ‘gridfs’ internal routing action
	Notes

	The GlusterFS plugin	Step1: glusterfs installation
	Step2: the first cluster
	Step3: uWSGI
	High availability
	Multiple mountpoints
	Multiprocess VS multithread
	Internal routing
	Using capabilities (on Linux)
	Notes:

	The RADOS plugin	Step1: Ceph cluster and content
	Step2: uWSGI
	High availability
	Multiple mountpoints
	HTTP methods
	Features
	Caching example
	Security note
	Notes

Other plugins¶

	The Pty plugin
	SPNEGO authentication
	Configuring uWSGI with LDAP

Broken/deprecated features¶

	Integrating uWSGI with Erlang
	Management Flags
	uWSGI Go support (1.4 only)

Release Notes¶

Stable releases¶

	uWSGI 2.0.24
	uWSGI 2.0.23
	uWSGI 2.0.22
	uWSGI 2.0.21
	uWSGI 2.0.20
	uWSGI 2.0.19.1
	uWSGI 2.0.19
	uWSGI 2.0.18
	uWSGI 2.0.17.1
	uWSGI 2.0.17
	uWSGI 2.0.16
	uWSGI 2.0.15
	uWSGI 2.0.14
	uWSGI 2.0.13.1
	uWSGI 2.0.13
	uWSGI 2.0.12
	uWSGI 2.0.11.2
	uWSGI 2.0.11.1
	uWSGI 2.0.11
	uWSGI 2.0.10
	uWSGI 2.0.9
	uWSGI 2.0.8
	uWSGI 2.0.7
	uWSGI 2.0.6
	uWSGI 2.0.5
	uWSGI 2.0.4
	uWSGI 2.0.3
	uWSGI 2.0.2
	uWSGI 2.0.1
	uWSGI 2.0
	uWSGI 1.9.21
	uWSGI 1.9.20
	uWSGI 1.9.19
	uWSGI 1.9.18
	uWSGI 1.9.17
	uWSGI 1.9.16
	uWSGI 1.9.15
	uWSGI 1.9.14
	uWSGI 1.9.13
	uWSGI 1.9.12
	uWSGI 1.9.11
	uWSGI 1.9.10
	uWSGI 1.9.9
	uWSGI 1.9.8
	uWSGI 1.9.7
	uWSGI 1.9.6
	uWSGI 1.9.5
	uWSGI 1.9.4
	uWSGI 1.9.3
	uWSGI 1.9.2
	uWSGI 1.9.1
	uWSGI 1.9

Contact¶

	IRC
	#uwsgi @ irc.freenode.org.

	Twitter
	https://twitter.com/unbit

	Commercial support
	http://unbit.com/

.

Commercial support¶

You can buy commercial support from http://unbit.com

Donate¶

uWSGI development is maintained by Unbit . You can buy commercial support and licensing. If you are not an Unbit customer, or you cannot/do not want to buy a commercial uWSGI license, consider making a donation. Obviously please feel free to ask for new features in your donation.

We will give credit to everyone who wants to sponsor new features.

Check http://unbit.it/uwsgi_donate for the donation link.

Sponsors¶

https://www.pythonanywhere.com/

https://lincolnloop.com/

https://yourlabs.io/oss

https://fili.com

Indices and tables¶

	Index

	Module Index

	Search Page

 Table of Contents

 	The uWSGI project
	Included components (updated to latest stable release)
	Quickstarts
	Table of Contents
	Tutorials
	Articles
	uWSGI Subsystems
	Scaling with uWSGI
	Securing uWSGI
	Keeping an eye on your apps
	Async and loop engines
	Web Server support
	Language support
	Other plugins
	Broken/deprecated features
	Release Notes	Stable releases

	Contact
	Commercial support
	Donate
	Sponsors
	Indices and tables

 Next topic

 Quickstart for Python/WSGI applications

 This Page

 	Show Source

 Quick search

 Navigation

 	
 index
	
 modules |
	
 next |
	uWSGI 2.0 documentation »
	The uWSGI project

 © Copyright 2012-2016, uWSGI.
 Created using Sphinx 7.2.6.

